Lipase-Catalysed Solvent-Free Esterification of Fatty Acids with Lower Alcohols


The traditional process of ester manufacturing uses high temperatures (150-250°C) and chemical catalysts. This translates into extreme reaction conditions, unwanted side reactions, difficult catalyst recovery and poor product quality requiring energy intensive downstream processing. In contrast, solvent-free enzyme-catalysed esterification is carried out at milder temperatures and results in a highly selective product with no side reactions, minimal post processing as well as significant energy and cost savings. It shows clear advantages compared to traditional processes through process simplification, increased product quality and reduced carbon footprint.


The Lipametics project aimed to develop a solvent-free enzymatic esterification process for the production of fatty acid esters. The project set out to research the raw materials, pilot production, general product specifications and applications for cosmetics and animal feed.

From Innovation to Business

Lipametics investigated solvent-free enzymatic synthesis of 4 types of esters. A coupled enzymatic esterification and membrane assisted water removal (produced during esterification) was demonstrated successfully at VITO at 3 L scale. The process resulted in complete fatty acid conversion and very selective water removal by membrane. Moreover, a high enzyme productivity was achieved without any loss in enzyme activity. VITO provided more than 10kg of product to the companies for application testing in cosmetics (Gova) and animal feed (Nutrition Sciences). The final products met the benchmarked specifications. After validation in cosmetic applications of the enzymatically produced product, upscaling was successfully undertaken to replicate the coupled reactor-membrane setup at 200 L scale in an upgraded pilot installation at Oleon’s site.

The innovations achieved in the Lipametics project will help bridge the gap in available technology for the esterification of fatty acids with lower alcohols. This will result in improved commercial availability of lipase-catalysed esters.

Project details

Project type
Innovation Programme
Biobased Value Chains
Project status
Approved on
Project date
€1 119 003
€741 574